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Abstract. For  the Broadwell model of the nonlinear Boltzmann equation, there 
are shock profile solutions, i.e. smooth traveling waves that connect two 
equilibrium states. For  weak shock waves, we prove asymptotic (in time) 
stability with respect to small perturbations of the initial data. Following the 
work of Liu [7] on shock wave stability for viscous conservation laws, the 
method consists of analyzing the solution as the sum of a shock wave, a 
diffusive wave, a linear hyperbolic wave and an error term. The diffusive and 
linear hyperbolic waves are approximate solutions of the fluid dynamic 
equations corresponding to the Broadwell model. The error term is estimated 
using a variation of the energy estimates of Kawashima and Matsumura [6] 
and the characteristic energy method of Liu [7]. 

1. Introduction 

The Broadwell model for the nonlinear Bottzmann equation is 

-~ + ~x f÷ =fd - f ÷ f - '  

~ f o =  ~ ~ - ~(f6 - f , f - ) ,  (1.1) 

in which f+, )Co, f -  represent the densities of particles moving with speeds 1,0, - 1 
in the x direction. The physical significance of (1.1) is discussed in [2, 3]. Global 
existence for solutions of the initial value problem for (1.1) is proved in [1 (3] and the 
fluid dynamic limit for (1.1) is analyzed in [3]. 

* Research supported by the Office of Naval Research through grant N00014-81-0002 and by the 
National Science Foundation through grant NSF-MCS-83-01260 
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Shock wave solutions of (1.1) are analyzed in [2, 4]. They are traveling wave 
solutions f = ( f+, fo , f - )  (Y = x - st) solving 

(1 --S)~yf+ = f ~ - -  f+ f_  , 

0 
- s ~ y f O  = - -  ½ ( f g  - f +  f - ) ,  (1 .2 )  

--(1 + s)~-yf_ = foa-  f + f_  , 

for - ~ < y < m with condit ions 

lim f (y)  = g -  ®, lim f (y)  = g~ .  (1.3) 
y---~ - -  oO y ' - *  ct~ 

The limiting states g~ = (g~, g~, g_°2) and g -  ~ = (g T- ®, go o~, g -  oo) are equilibria 
satisfying 

g~g~ = (g~)2, g+°~gZ~ = (go °°) 2 . (1.4) 

Moreover  g% g -  ~o, must  be related by Rankine-Hugoniot  and entropy condit ions 
[4], i.e. 

(1 - s)g~ - 4sg~ - (1 + s)g ~_ = (1 - s)g+ ~ - 4sgo ~ - (1 + s)g-_ ~,  

(1 --s)g~ +(1 +s)g~ =(1 --s)g+ ~ +(1 +s)g7_ °° , (1.5) 

s(g~ + 4 g ~  + g ~ )  <s(g+ ~ + 4 g o  ~ + g -  ~). 

Solutions of (1.2)-(1.3) can be written explicitly as hyperbolic tangents. Such a 
solution is called a weak shock wave if g - ~  and gO~ are close. 

In this paper  we prove asymptotic  (in time) stability with respect to small 
perturbations in initial da ta  for weak shock wave solutions of (1.1). The main result 
is the following theorem: 

Theorem 1. There is a number 6 > 0 for which the following is true: Let f l ( x - s t )  
= ( f l  +, flo, f l  _)(x-st) solve (1.2), (1..3) with 

[g~ - -  g +  °°I2 "~ Ig~ - -go  ~[2 + [g~ __ g7- °°I z < 6 2 . (1.6) 

Let fi(x)=(f1+, fxo, f i - ) (x )  be initial data that is uniformly bounded and satisfies 

~ ( [ h - A [ + [ h - f ~ [ a + [ h x - A x [ Z + [ f t x x - f ~ x x l a ) d x < 6  2 . (1.7) 

Let f ( x ,  t )=(f+, fo , f - ) (x ,  t) solve (1.1) with f (x ,  t = 0 ) =  f1(x). Then there is a finite 
number Xo such that for f t  = f l (x  + Xo, t), 

sup ~ I f - , f l l 2 + l f x - f ~ x l 2 + l f t - f l t l ~ d x  
t - - o 0  

+ ~ ~ [f- fd2+[fx-f~x[Z+[ft- f~,12dxdz<=c6 2, (1.8) 
0 - - o o  

lim ~ IL - f l x l2 (x , t )dx=O.  (1.9) 
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Note. 1) The translation x0 can be computed directly from the initial data, as in Eq. 
(3.4). 

2) The existence of a unique solution f (x ,  t) for all time is guaranteed by the 
global existence theory for the BroadweU equation [10]. For a survey of the theory, 
see [9]. 

3) Through the Sobolev inequality, (1.8) and (1.9) imply that 
lim sup tfl(x o +x- - s t ) - - f ( x ,  t)t =0. 
t ---~ oO X 

4) The solution produced in [10] may in general be exponentially growing. 
Our theorem shows that this is not the case for initial data close to a weak shock. 
An analogous result is proved in [1] for initial data with finite total mass. In that 
case the solution eventually decomposes into linear waves with characteristic 
speeds _ 1, 0 of (1.1). In the present case, the initial state has infinite mass and the 
results of [1] are not applicable. The asymptotic behavior o f  solutions is 
approximated by the fluid dynamic limit with characteristic speeds related to the 
sound speed. 

The proof of this theorem is partly based on the fluid dynamic approximation, 
i.e. the Chapman-Enskog expansion, for the difference between the solution f and 
the shock wave fl- This approximation is valid for describing the nonlinear 
diffusion wave because the difference f - f l  is small there. In the region of the 
shock, the difference f - f l  consists mainly of a linear hyperbolic wave, which 
satisfies equations that are slightly different from the model Euler equations. 
Analogous stability results were proved by Liu for viscous conservation laws [7] 
and for the compressible Navier-Stokes equations [8]. Earlier results on stability 
for the Broadwell equations by Kawashima and Matsumura (abbreviated by KM) 
[6] and for viscous conservation laws by Goodman [5] and KM [6] are more 
restrictive in that they impose the constraint that the initial perturbation f ~ - f l  
have no net (integral over x) mass or momentum, which precludes the diffusion 
wave. 

Following Liu, the difference f -  fl  is decomposed into three parts: First there 
is a nonlinear diffusion wave f2, which carries the net mass and momentum of 
f - f l  and is an approximate solution of the model Navier-Stokes Eq. (2.14). The 
second part is a linear hyperbolic wave f3 which corrects for the local mass and 
momentum errors in the diffusion wave but carries no net mass and momentum 
asymptotically in time. Selection of the correct linear hyperbolic Eq. (2.39), (2.40) 
for this wave is a crucial detail of this analysis. The third part is a remainder term 
f4, which is estimated using a slight modification of the energy estimates of KM 
[6]. These energy estimates must be supplemented by estimates of the character- 
istic energy method [7] in regions where the diffusion wave is weakly expansive. 
Use of this method is the main difference between the present stability result and 
the result of KM [6]. In this paper the characteristic energy method is slightly 
simplified to use integration along the piecewise linear approximation of the 
characteristics. This was partly motivated by a suggestion from James Ralston. 

The Broadwetl equations are rewritten and the equations for diffusive waves 
and linear hyperbolic waves are derived in Sect. 2. The equation for the remainder 
and the error terms in that equation are described in Sect. 3. In Sect. 4 energy 
estimates are proved and in Sect. 5 the characteristic energy method is applied. The 
proof of Theorem 1 is summarized at the end of Sect. 5. 
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2. The Broadwell Equation and the Model Fluid Dynamic Equations 

2A. The Broadwell Equation and Shock Profile 

Rewrite the Broadwell Eq. (1.1) as 

~ + m x = 0 ,  mt+zx=O,  
(2.1) 

z~ + rn~ ---- } {(Q -- z) z -- 4 (z 2 -- mZ) } =- Q ( f  f ) ,  

in which Q = f + + 4 f o + f -  is the local mass density, m = f + - f _  is the local 
momentum and z = f+ + f_.  For  convenience denote now f = (~, m, z) and define 
the quadratic form Q to be the right-hand side of (2.1). 

The shock wave solutions of(2.1) [corresponding to solutions of(1.2), (1.3)] are 
traveling waves (Q, m, z) (x, t) = (e l ,  ml ,  Zl) (~ = x-st) solving 

-sQleq-ml~ =0 ,  - s m l e + z l e = O ,  
(2.2) 

--szl~ + m i e  = gl { (Qi  - -  z l )  2 _ 4(z~ - -  m~)}  

with limiting values 

lim (Ql, ml, z O = ( ~ , m ~ , z ~ ) ,  lim (~l, mi, z i ) = ( Q ; ~ , m ; ~ , z ;  oo) (2.3) 

which are in equilibrium, 

oo o o 2  oo2 oo2 (~1 - Z l  ) - 4 ( z  1 ) - 4 ( m  a ) , (~l-oo-zi-oo)2 =4(z~-~o)z_4(m[-O~)2, (2.4) 

satisfy Rankine-Hugoniot conditions 

- - S Q a ~ + r n l ~ = - - s ~ + m ~ ,  - - sm;~°+z i -oo=- - sm~+z~ ,  (2.5) 

and satisfy an entropy condition 

s~lO~ < sQ; ~ ~o. (2.6) 

For any limiting states satisfying (2.4), (2.5), (2.6) a unique solution of (2.2), (2.3) is 
easily constructed [4]. 

For the sake of definiteness we assume that (Q~, mr, z 0 is a forward shock wave, 
which here just means that the shock speed s is positive. The speed s also satisfies 
the stability condition [4] 

22( ~ ~- oo, m~- ~o) > s > 22(~ °, m~ °) (2.7) 

in which 2a, 22, satisfying 2, < 0 < 22, are the characteristic speeds of the model 
Euler equations [cf. (2.13)] described in the next section. 

The explicit form of the shock wave is given by 

Qi = - ½  m - ~  mOO 1 tanh(~c(x+Y-st) )+½ ~m-oo+moo (2.8) m 1 - -  

zl  z - ® - z ~ /  \ z -°° +z  °o 

in which )~ is an arbitrary constant, with tc =(1 + 3s 2) (16s)-1 (Q-~o_ Ooo) [4]. 
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2B. Model Fluid Equations 

By assuming that f=(Q, m, z) is a local Maxwellian satisfying Q(f, f ) =  0 at every 
(x, t) and by dropping the third equation of (2.1), the following model Euler 
equations are obtained: 

in which 

with 

Ot + mx = O, m~ + 2(~, m)~ = O, (2.9) 

~(q, m) = QF(u) (2.10) 

u=m/Q, F ( u ) = ( 2 ~ - l ) / 3 .  

The Euler Eqs. (2.9) can be rewritten as 

(2.11) 

with 

~2 ~- 

() (0 
m Q t +  a/b m/b m x 

a = (6 --~)/4, b = (~ + 3~)/4. 

The characteristic speeds of (2.9') are 

21 = m -  ]/~5-+ 4ab _- 2a 

2b m + ~ 4ab'  

m + ~ + 4ab 2a 

2b _ m + V ~  + 4ab " 

(2.12) 

(2.13) 

If the components f+, f0, f -  of the solution f are initially nonnegative, they remain 
nonnegative [1]. For such a solution [u[ < 1 (i.e., the average velocity is no larger 
than the molecular speed) and a>0,  b>0. Thus 21 <0<22.  

A better approximation of (2.1) is given by the model Navier-Stokes equations, 
which are obtained from (2.1) through the Chapman-Enskog expansion [3] as 

~t+mx=0,  m,+g(e, m)x =0 ,  (2.14) 

in which 

~(Q, m) = ~(~, m) -- v(u) ux . (2.15) 

The viscosity function v is 

v(u) = 2 (1 - F(u))(1 + 3u 2)- 3/2. (2.16) 

The Euler equations (2.9) have discontinuous shock wave solutions, while the 
Navier-Stokes equations (2.14) have smooth shock profile solutions, which 
approximate the shock wave solutions of the Broadwell equation (2.1) if the shocks 
are weak. 

Just as for the real Navier-Stokes equations [8], the shock waves are 
compressive; that is the associated characteristic speed 2 2 (for forward shocks) 
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decreases across the shock. As a consequence, 21, 22, a and b defined by (2.13) are 
strictly monotone across a viscous shock wave for (2.14). For a weak shock 
wave of (2.1) K M  [6] showed that 

~ ( 2 0 < 0 ,  ~-~ (22)<0, (2.17) 

in which 21, 22 are evaluated at the shock wave f = f t .  Also since the shock wave is 
forward (with approximate speed 22), and since the shock wave decays exponenti- 
ally away from its center, it satisfies 

IZ +(fl - f i ( ~ ) ) l  + Iz-(f l  - f i ( -  GO))1 + l~f l I  + [~,L I < e 122xt < e6e- ~1~-~,1 (2.18) 

in which X+ =1 for x>st ,  ~+ = 0  for x<st ,  X-=1--Z+,  and y is some constant. 

2C. Diffusion Waves 

Liu [7] showed that, for a viscous conservation law such as (2.14), a small 
perturbation of a constant evolves approximately as a diffusion wave. For  the 
forward shock wave solution (el, ml, z0  of (2.2), the diffusion wave (Q2, m2) moves 
backward, and so it is a perturbation of the limiting state (O~- ~o, mi- ~, z~- oo). As in 
[7], the diffusion wave solves 

~2t + m2x = el ,  (2.19) 

/n2z Av Z2x = e2, (2.20) 

in which 

z2 = z(02 + 0~- o~, m2 + m~- ®) -  z~- ®. (2.21) 

From now on we write fz-(e2,m2,~2). The error terms el, e2 are chosen as in 
Sect. 3 of [-7] so that (2.19), (2.20) is equivalent to Burger's equation. 

To be precise, f2 is uniquely determined by the following properties: 
(i) (02 +01 -~°, mz +rn; °~) lies on the integral curve of the right eigenvector rl 

through (~- oo, mi- ~o), 
(ii) 2"1 - 21(02 + 0i- oo, m2 + m;  o~)_ 21 oo is a self-similar solution of the Burgers 

equation, i.e. 

)Tl(x, t) = [(exp0c6/2[/~)- 1)(t + 1)- 1/2 e x p ( -  y2)] 

[ T × , ( 2 . 2 2 )  
Y 

y -  (x --(t + 1)2~- ~)/2~/~it-Sk-~. (2.23) 

The quantities r 1 and ~ =-~ +(0f ~, rn~-~) are defined in (2.26), (2.28) below, tc has 
value I or - 1 for diffusion wave with positive or negative mass. Here ~c6 replaces 6 
in [7], since we now take 6 > 0. 

For  the construction of the diffusion wave from Burger's equation, the viscosity 
matrix of (2.14) must be expressed in the basis of left and right eigenvectors of the 
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convection matrix of (2.9'). The viscosity matrix is 

( 0 0 ) 
V= -amb-3 aQb-3 • (2.24) 

The left eigenvectors l± and right eigenvectors r e of the convection matrix are 

l~ = ( ( - m - ~ m ~ ) / 2 b ,  l),  1 2 = ( ( - m + ~ ) / 2 b ,  1), (2.25) 

r , = ( - Z b / ] / ~ , l - m / ~ )  t , 
(2.26) 

r2 = (2b/]//~ +4ab, 1 + m/ /m 2 + 4ab) t . 

In the coordinate system r~, r2, the viscosity matrix becomes 

(l l:)V(rlr~)=(2: 2-_) (2.27) 

with 
+_rn(2b-o)+Q mV~-+4ab a 

± - ~ 4ab . b--g. (2.28) 

Using the facts that a > 0, b > 0 and [F(u)i < 1, it is easily shown that the diagonal 
elements of (2.26) are positive, i.e. ~+ > 0, which is needed for the construction of 
the diffusion wave f2. 

Define 

(21--{(x,t),t>=O,x<O}, f22--{(x,t),t>O,x>=O } . 

It follows as in Sect. 5 of [7] that the set f21 can be divided into two parts f2+ and 
f2_ such that the characteristics for (Q2, m2) are compressive in f2_ and weakly 
expansive in O+, i.e. 

021(o2'mz)ox < 0  in O_,  021(Q2'rn2)>0~x in O+. (2.29) 

Moreover f2+ are characterized by (with y defined in (2.23)) 

f2+(f2_)=_{(x,t)eg2a:y>yl(y<yx)} if ~c=l,  
(2.30) f2+(f2_)=-{(x,t)ef2x:y<yl(y>yl) } if x = - l ,  

for some constant Yl, as shown in Fig. 1. Define also f2_+ (t) = f2_+ n{(x, z) :0 < z < t}, 
f2i(t)=O/~{(x,z):O<~: <t } for i=1,2 .  

The nonlinear diffusion wave satisfies the following bounds (cf. (3.8) in [7]): 

[fzl ~ 1~21 + Im2l + Iz21 + lu21 ~ cr(t + l ) -  t /2e- '2 ,  

If2xl < cr(t + l ) -  l(ly[ + l)e-Y2, 

I f2~l < c6(t + 1)- 3/Z(lyf + 1) e - r2, 

lfzx,I <cr ( t  + 1)- Z(lyJ 3 + 1)e -y2, 

If2~l-< c~(t + 1)-3/Z(ly12 + 1)e -y~ , 

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.35) 
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K=-I 

~2 

/'¢=1 

Fig. 1. Regions g2+, O_, 02 in (x,t) for the two cases ~c=l and ~= - I  

a2z 

in which y is defined by (2.23). Moreover since f2 is determined through its 
eigenvalue 2~, it follows that 

I~xf2l < cl0x211, 10rf21 < cl0t211, (2.36) 

(~?t+ 210x)f2 = O(1)~x~2~. (2.37) 

Using (6.12), (6.13), (3.5) of [73, the error terms e 1, e: satisfy the bound 

leil ~ e6(1 + t)- 3/Z(lylZ + l)e-Y~. (2.38) 

2D. Linear Hyperbolic Wave 

A linear hyperbolic wave (~3, m3, z3(~3, m3)) is needed as in [7J to compensate for 
the errors e~, ez in (2.19), (2.20). The equations for ~3, m3 are 

~ 3 t + m 3 x  = - - e l ,  m3 t -+-za(~3 ,m3)x  = --ez, 
(2.39) 

(~3,m3)(x,t)~O as t ~ c c ,  

in which 

A M (2.40) z3(Q3, m3) = ~ Q3 + ~-  m3, 

with A, B, M depending on (Q~, m 1, zl) and (Q2,m2)) as 

A=¼{(O,+Q2)--(zl+z2)}, B = ¼{(~ol + ~2)-t- 3(z1 + z2)}, 

M = m 1 + m2. (2.41) 

The form of z3 is chosen so that fz + f3, together with the shock wave f l ,  forms an 
accurate approximate solution [cf. (3.11)]. Clearly from (2.19), (2.20), and (2.39), 

d 
(mz +m3)(x,t)dx=O (2.42) d ~ (~2+e3)(x,t)clx=O, d~-~ & - ~  

for t>_--0. Thus if the net mass and momentum of the initial perturbation is 
contained in (~2,m2)+(Q3,m3), it will remain there for all time. Moreover the 
construction in Sect. 3 of (~2, mz) and (Q3, m3) guarantees that 

( Q2 + Q3 ~ (x, t)dx =66r ~ ~ (2.43) 
- ~ \ m z  + m3/ 
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in which g is a constant and r~- o0 = rl(Q[ ~, m? 0o) is the right eigenvector defined in 
(2.26). 

As shown in [7] the error terms (e~, e2) have a good form and decay rate. The 
initial data is appropriately chosen as in [7] so that f 3 ~ 0  as t~oo .  It follows that 
f3 =(~3, m3,~3), with Q3, m3 solving (2.39), has the following decay properties (cf. 
Theorems 7.5, 7.6 of [7]) 

If3(x,t)l<=cb{[l +t +tyZ]-l +[l  +t +tl/Zlyl]-3/z}, (2.44) 

If3tl + If3~(x, t)l + If3=(x, t)l 

<c(5{[l +t +ty2]-3/2 +[l  +t +tl/2lyl]-2 +lt + ll-3/2(lfl~l+lf2xl)}. (2.45) 

3. Wave Decomposition of the Solution 

The equations are reformulated here in terms of ~, m, z. Consider initial data 
f i  = (0i, mi, zx) (x) that is a perturbation of a given forward shock wave solution 
(~1,ml, zl)(~), i.e. 

(~,, m,, z,) (x) = (01, m ~, z 1) (x) + (g ,  m', z') (x, 0) (3.1) 

with (0', m', z') ( -, 0) e Ll(x) and lim (~', m', z') (x, 0) = 0. The solution (Q, m, z) (x, t) 

of the Broadwell equation with this initial data is written as 

(e,  in, Z) (X, t) = (~ 1, m 1, g 1) (X - -  s t )  -[- (O t, m t, z ' )  (x ,  t) . ( 3 . 2 )  

From (2.1) the solution has two time-invariant quantities, mass and momen- 
tum, i.e. 

m' (x,t)clx= ~ m' (x,O)dx (3.3) 
-oo -oo 

for all t>0 .  For  a weak forward shock wave the jump [Ol, ml] 
= (0~ ~, m~-oo)_(p~-o~, mi-00) is nearly equal to the right eigenvector rz(O? oo, m? oo) 
defined in (2.26). It follows that [~1, ml] and rl(Q[-~, rn~-~)~ are linearly indepen- 
dent and that the net perturbed mass and momentum can be written as a linear 
combination of them, i.e. for some constants 8 and xo, 

(~', m') (x, t)dx = ~6r1(0; o~, m~ oo)t + xo [Q1, ml]. 
--¢0 

Note that 

(3.4) 

{(01,mO(x + xo - s t l - ( o l ,  mO(x-st)}dx=xo[Ol,ml].  (3.5/ 
--CO 

convenience we can take x0 in (3.4) to be zero after replacing Thus for 
(Ql,ml, zO(x-s t )  in (3.1), (3.2) by (01,ml,zl)(X+Xo-St). 

With Xo set to zero this way and g defined by (3.4), the solution (e, m, z) is 
decomposed into the shock wave, diffusion wave, linear hyperbolic wave and 
remainder, i.e. 

3 

(~, m, z) (x, t) = (e, ,  m,,  z 11 (x - st) + Z (~,, mi, ~,(Q,, m3) (x, t) 
i = 2  

+ (Q,, m,, z,) (x, t). (3.6) 
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The diffusion wave (Oz, m2,~2) satisfies (2.19), (2.20) the linear hyperbolic wave 
(Q3, rn3, ~3) satisfies (2.39), and together they satisfy (2.43). 

Combine the equations for (oi, mi, z i ) ( i= l , 2 ,3 )  together with Eq.(2.1) for 
(Q, m, z) to obtain the following equation for (~,, m,, z,): 

O,~+m,x=O,  m,~+z ,x=O,  
(3.7) 

z , t  + m,x  = G -  Q ( f  f ) -  (z, + zz + z3) , -  (ml + m2 + m3)x. 

The initial data for f ,  = (0,, m,, z,) is defined through (3.6) since the initial values of 
(Oi, me, zi) i = 1, 2, 3 are already chosen. Because of (1.7) f ,  satisfies 

If ,  I + l f ,  I 2 + If,.xl z + I f,~l 2 dx <_,~2 

for t = 0. Because of (2.43) and (3.4) with xo = 0, f ,  has no net mass or momentum, 
i.e. 

(O , ,  m , )  (x, t)dx = 0. (3.8) 
- o o  

We wish to show that (0, m, z)+(0t,  ml, Zl) as t ~  m. Since (0~, me, z~)~0 for i = 2, 3, 
we need only show that (0,, m,, z , )+0 .  

First we rearrange the right-hand side G in (3.7). Decompose G as 

G = H + 2Q(f t  + f2 +./3, f , )  + O(f , ,  f , ) ,  (3.9) 

in which fi = (Oi, mi, z~), f ,  = (0,, m, ,  z,).  The parts of G containing f ,  are 

Q(f l  + f2, f , )  = ½(Ao, + M m ,  - B z , ) ,  

Q(f~,f ,)=~(o,-~3)o, ~ + ~m3m,  - ~(03 + 3z3)z,, (3.10) 
__ 1 Z 2 Z 2 2 Q(f , , f , )=F(q, ,m, ,z , )= ~{(0,- ,) -4(  , -m,)} ,  

in which A, B, M are defined in (2.41). 
For the linear hyperbolic wave, z 3 =z3(03, m3) was chosen in (2.40) so that 

Q(ft + L ,  f3) = 0 .  (3.1 I) 

Also use the equation for f~ to find that the inhomogeneous part of G is 
H = H  1 + H 2 + H 3 ,  in which 

H l = Q ( f l - ~ +  f2 , f ; - °~+ f z ) - ( z ; ° ~ + ~ z ) t - ( m ; ° ~ + m 2 ) ~ ,  (3.12) 

H 2 =  2 Q ( f  ~ - f i - ~ ;  f2) , (3.13) 

n~  = Q(f3, f 3 ) -  z3~- m3~, (3.14) 

since Q(f~-~, f l -~)=(z~°~)t=(m?°~)x=O. The term H1 is the error in the third 
equation of (2.1) in which f is replaced by a solution f2 +f~- ~ of the Chapman- 
Enskog expansion (i.e. a solution of the model Navier-Stokes equations). A 
straightforward calculation in Appendix A shows that 

H i  = -- (F2 - -  u2F~2) el - F'ze2 -- F'2(v2u2:,)~ + (V2Uz~)t - -}(v2u2~) z , (3.15) 

in which F 2 = F ( u ;  ~ + u2), vz = v(u; ~ + ua). 
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Because of (3.8) it is natural to introduce 

(~,~p)(x,t)= i (~, ,m,)(y , t )dy (3.16) 
- o o  

with (q~,w)(x= +o%0=(0 ,0 ) .  Integrate the first two equations of (3.7) and 
eliminate z .  to rewrite this system as 

q~+~p.=O, (3.17) 

- H -  K(qS~,~,, ~,)), (3.18) 

in which H = H1 + Hz + H3 is defined in (3.12~(3.14), F is defined in (3.10) and 

K(4)~,w~,~,)=Q(A,f,)=~(e3-z3)~+½m~-~(e~+3z~)~,. (3.19) 

4. Energy Estimates 

In this section energy estimates are derived for the system (3.17), (3.18). These 
estimates are the same as the estimates of Kawashima and Matsumura [6], except 
for small changes caused by the inclusion o f f z  in A, B, M and the terms H and K. 
However, because of these small changes, the energy estimates do not close: on the 
weakly expansive region O + of the diffusive wave f2, a second set of characteristic 
energy estimates are needed and are derived in the next section. 

First change variables from (x, t) to (~, t) with ~ = x -  st and s the shock speed. 
Note  that f2 is not a traveling wave with speed s; thus in the present problem A, B, 
M depend on t as well as ~, in contrast to [6]. Rewrite (3.17), (3.18) as 

in which 

Ll(~b, ~p) = 0, (4.1) 

L2(~b, ~p) = - F1, (4.2) 

L2((o,~p)=-(~&-s~¢)t-sOpt-stp¢)¢-~p¢¢ + A(~¢ +(M--sB)~p¢+ Btpt, (4.3) 

/"1 = r(o¢, ~p¢, - OPt - s~p¢)) + K(qS¢, ~p¢, lp, - slp¢) + H .  

The initial data for (4.1), (4.2) is 

(~b, ~) (~, 0) = (q%, ~Po) (~), tp,((, 0) = S~po¢- z.(~). (4.4) 

Define the following three norms for ~p, q~: 

N~(t)= sup (llq~,~pH2(z)+ II~p, ll~(z)), (4.5) 
O<_z<_t 

{i t N3(t)-- (121¢[ + 122~1)(q~2 + ~p2)d~d r , (4.7) 
- o o  
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in which lJ 11 = H tlo and tl ilk is the k th Sobolev norm in space, e.g. 
\1/2 

I ]+ ' l k= ( !  ~ ~b2+...+(O~q$)2d~) . (4.8) 

In these definitions we could replace ~ by x everywhere (without any changes) and 

oo  espoo  og, y o .n e ,o 

Before proving the energy estimates, we derive two lemmas concerning the 
shock wave f l ,  diffusion wave f2 and linear hyperbolic wave f3- Define 
A+ = lim A(¢,t), B+ = lim B(~,t). Note that A+, B+ are positive and do not 

- ~--, +_ ee - ~ _ + o 0  - - 

depend on t. 

Lemma 4.1. Let f l  be a forward shock wave solution of (1.1) with strength 6, i.e. 
satisfying (1.6). Let fz  be a corresponding diffusive wave solution of (2.19), (2.20), for 
initial data f i -  f l  of  magnitude 6 i.e. satisfying (1.7). I f  6 is sufficiently small then 

(i) There are positive constants c, C, and to, independent of x, t, and 6, such that 

c < A + - K 6 < A ( ~ , t ) < A _  +~c6<C, 
(4.9) 

c<B+-t~FJ<B(~,t)<B_+tcFJ<C, sA¢<~x$. 

(ii) There is 2 > 0 such that sup D i < 0 for i = 1, 2, 3 in which 

D~ = A(A--2),  D 2 =2(2--  B), 

D 3 = M Z - 4 ( A - 2 ) ( 2 - B ) .  

(iii) Let 2, fl be constants. I f  fl is small enough then 

(A - I ( M -  sB))¢ - I(A - l ) t [-  ) [(A -1 B) t + s(A- 1)¢,] _ fl [(A - ~)¢1 

{ - ~ 6 e  - ~  fo r  4>0 
> -~l,h~I f o r  4<0 

(4.10) 

Jbr some constant ~. 

Proof This lemma was proved in [6] for the case of a shock, i.e. f2 -- 0, with K = 0 in 
(i), (iii). In that case ~ - 0 .  Since Ifzl < c6, the inequalities (4.9), (ii) are only slightly 
perturbed. Since 1f2¢1 + If2~t <cg)e-~ for ~ > 0  and lfz~l + tfztl <c12~1 for ~ < 0  the 
inequality (4.10) is derived. 

The second lemma describes bounds on H, K, and F. 

Lemma 4.2. Let H = H I  + H2 + H3, K, F be defined by (3.12}{3.14), (3.19), (3.10) 
Denote 

F = (Iq$1 + ICj + 1~¢~1 + t~l + I~l + I ~ j  + I~tt + I~'tet) • (4.11) 

Then 

7 f (IHI +]H¢t) Fd~dt <= c~Ni(t), 
o 

I (I/[ + [g¢l)Fd~dt <= c6g~(t)g2(t), 
o 

~( iF  I + [F~i)Fd~dt<= cNl(t)N2(t) 2 . 

(4.12) 

(4.13) 

(4.14) 
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Proof of Lemma 4.2. First derive pointwise bounds on Hi, K, and F. For  H1 use 
(3.15), (2.32-2.35), (2.38) to obtain 

In~l+ IH1¢[ < c(lell+ lezl + lu2xxl ÷ [Uz~tl + luzxl 2 + lu2~u2,1) 
C(~(1 + t) - 3/2([y13 .~_ 1 ) e - y2 (4.15) 

in which y = (x-2t) /21/ /~.  In estimating H2, use (3.13) and the fact that f l  -f~-~o 
and f2 have nearly disjoint supports as seen from (2.8) and (2.31), so that  

In21 + IHzel < c I)ht [A - - f l -  ~l <c~2( t+ 1)- 1/2e-r~(tanhx(x--st)+ 1) 
< c62 e-~(1~1 +0. (4.16) 

For  H3 use (3.14), (2.44), (2.45) to estimate 

IH31+ lH3J < lf3lz + lf~l + lf3,1 
=<cb{[1 +t +ty2]-3/2 +[l  +t +t~/2ly[] -z 

+ It+ 1 [-3/z(]f~l + ]fz~l)} • (4.17) 

Estimate K using (3.19), (2A4), (2.45) to obtain 

IKI+IKeI<(IU31+IU3~I)(I~I+I~P~I+t~P,I+I~I+I'C~xI+I~P~tt) (4.18) 

Finally estimate F=F(O¢, ~p¢, -~p, +s~p¢) from its definition (3.10) as 

lrl + l~l <(1~¢I + t~;¢1 + I~;,I)([~el + I~¢et + [~;¢[ + I~&et + t~;,1 + 1~;,¢1)- (4.19) 

It follows that  

t 

! s(t, L + (o Up, 
(4.20) 

t 
I f (IKt + tK¢l)Fd~dv 
0 

t 

< I f F([f3l + [f3¢1)(](b¢l + I '~ l  + ]~&l + I~&j + [~;,[ + ]q~t¢l)d~dz 
0 
t 

_-< ~ sup (lf3l+lJ;¢ll][4¢,~p~,~,[ll[[q~,~p,q~,,4¢,~¢l[~dT 
o ¢ 

(i Y ) s u p  t[ 4 ,  1~, l])t, q~e, ~0el] 1 < sup (ILl + ]f3¢l)Zdr Nl(t)[ o~_<, 

<= cONl(t) Nz(t), (4.21) 

t 
I $(Irl + I~l)fd~d~ < i f (141 + 14¢1 + IwJI + I~¢1 + Iv,I) 
0 0 

× (Iq~¢l + Iq~¢¢1 + I~&l + 1~p¢¢[ + !~;,I + Itpt¢l)z d~ d~ 

< sup (Iq~l+lc~¢l+l~pl+[~p¢[+l~p,[)X2(t)2<cXl(t)X2(t) 2, (4.22) 
~,0-<r<t 

which concludes the proof of the lemma. 
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Now we proceed with the energy estimates, following the analysis of 
Kawashima and Matsumura [6]. There are four such estimates presented in 
Lemma 4.3; they are analogous to Lemmas 3.5-3.7 of [6]. 

Lemma 4.3 (Preliminary energy estimates). Let (o, ~p solve (3.17), (3.18) with 6 
sufficiently small. Then for some constant c 

t 

i) ]]~b(t)[I2+ II~(t)lltz+ II~pt(t)]12+ J" [IV¢,lptll2d~ 
0 

-<c(Ifq~(o)Ifz+ II~(o)1t~+ llto~(o)II2+ If I).~lCdx& 
~+(t)  

+ bNi(t) 2 + ~Nl(t ) + 3Nl(t)Nz(t ) + Nl(t  ) N2(t)2), (4.23) 

ii) tl4,¢(t)ll2 + i lt(~ell2d~-c(llq, e,~p,(t)ll2 + i ll~e, ~p, ll2d~ ) 
_<_c(llq~(0)[12 + H~pt(O)tlZ+6Nl(t)+6Nl(t)N2(t)+Nl(t)N2(t)2), (4.24) 

iii) II4~(t)I? + tt~(t)ll~+ !f~,dt)11~+ i 11~o,~,,p~lI ~d~-c  i 1t4,~,~,,~ll ~& 
0 0 

_-< c(ll ~¢(0)17 + II~dO)]l 2, + II~o,¢(o)1I 2 
+ bNl(t) + aNl(t)N2(t) + Nl(t)N2(t)2), (4.25) 

t t 

iv) II~b¢¢(t)ll2 + ~ ll~¢¢tI2dz-c(ll~p¢¢,tpt¢(t)ll2+ S (I[(b¢ll 2+ lltP¢,lPt[12) dz) 
0 0 

~ C(N ~D¢¢(0)H 2-~ Hlpt¢(O)n2+aXi(t)+(~nl(t)n2(t)+nl(t)N2(t)2). ( 4 . 2 6 )  

Note that ~pt(0)=-z,(0). A suitable linear combination of the four estimates 
(4.23)-(4.26) results in the main estimate of this section. 

Lemma 4.4 (Prindpal energy estimate). Under the assumptions of  Lemma 4.3, 

nl(t)  (na(t) - c(~ - c~n2(t ) - N2(t) 2) + n2(t) 2 ~ cnl(0) 2 
t 

+ ~ ~ [2xxl~pZdxdv. (4.27) 
0 ~+(t) 

The norms N~, N2 are defined in (4.5), (4.6). The proof of Lemma 4.4 is 
immediate. Bounding the integral on the right of (4.27) is the object of Sect. 5. 

Proof of Lemma 4.3. 
O) Proof of (4.23). Following [6] define 

LHS 1 ~ - -  ~¢L1 + A - l ( l ~ t  - -  s i d e  ) L 2 = - -  A - l ( I D t  - s l ] ) ¢ )  F I ,  
(4.28) 

LHS 2 _ q~L i + A -  itpL 2 = - - A -  lh0Fi. 

Integrate over -- co < ~ < 0% dropping some terms through integration by parts. 
After some rearrangements, one finds that 

LHS1 = [A - a  { ½ ( t P t -  sl/)~) 2 -~- 1t1)~} - -  ~b~),~] t 

+ A - t  [BOp t -  s~&) 2 + MOpt- s~p¢)~ - A~p~] 

+ ½(A - t)¢ [s0Pt-  st&) 2 + 2~Pt~-  s¥,~] - (A - 1)t [½0pt_ s~p¢)2 + ½ ~p~] + [ ] ¢, 
(4.29) 
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LHS2 = [½¢2 + ½A- ~B~p 2 + A -  b p 0 p t -  s~p¢) + ½s(A- ~)¢~p2]~ 

+ A - 1  [- _ (~ / ) t -  s1[)¢) 2 + I/3~3 + (1 - -  s 2) (A - 1)¢ ~p~p¢ _ ½(A - 1 ( / _  sB))¢ ~p2 

- -  [½(A- 1B),tp2 + (A-  1)t~(~, -- s~v¢) + ½s(A- 1)¢,~p2] + [ ]¢. (4.30) 

Add LHS1 + 2 L H S :  (here 2 is unrelated to the eigenvalues 23 to obtain 

(El + Ez +/~2)t + Es + E 4 + E s + E 6 + G +  [ -[¢ 

= - A -  ~(2~v + 0 P t -  stp¢))Fa, (4.31) 

in which 

( 2 A ¢ 2  A ~ +1 2"~ E l = A -  

2 : 
E 2 = A - ~ ( ~ B ~ p  +2~'Opt--sN¢)+½(Nt-stp¢)2), 

AS 1 2 
/~2 = T ( A -  )¢~P , 

E 3 = A - I((B-- 2) OPt -- s~'O 2 + M(~ ,  -- s~p0~o ¢ + (2-- A ) ~ ) ,  
(4.32) 

2 
E 4 = -- ~ (A-  ~ ( M -  sB))¢~p 2 , 

E 5 = -- (A - ~)t E½(~ o, - s~,) 2 + ½~P~ - )-v'OPt - s~o¢)], 

E6 = _ 22 [ (A - 1  B)  t + s ( A  - 1)¢j ~p2 

G = 2(1 -- s 2) (A-  1)¢~ptp¢ + ½(A- t), {sO&-- sv3¢) 2 + 2(~&-- s~¢)~¢ + stp~}. 

The quantit ies Ea, E2,/~2, E3, E4, G are the same as in [6] except that  A, B, M 
depend on f2 as well as f l ,  and hence on t as well as 4. 

It follows as in [6] f rom L e m m a  4.1 that  

E1 + E~ + ~ _< c(~ ~ + ~ +,;~ + ( ~ , -  s~) ) ,  
E~ + E2 +/~2 >- c(¢ 2 + ~p2 + v?~ + ( tp , -  s~0¢)2), (4.33) 

e~ > c ( ~  + 0p , -  s~)~). 

Since I(A- ~)¢1 + [(A- ~),l < ([21~] + 122~[) < ~, then 

I al < fl I(A - *)¢1W2 + c/~-1 ,~(W~ + (W, _ stp¢)2), 
lEvi < c,5((W,- sq,¢) 2 + ~p~) + I(Z - 1),1~2, (4.34) 

for any small fl > 0. By choosing 6 and fl small enough,  it follows using (iii) in 
L e m m a  4.1 that  

E 3 + E4 + E 5 + E 6 + G > c((~& - s~p¢)2 + ~p~)-- c(z + 12~1 + be- ~*)~p2, (4.35) 

in which ~+ = 0  for xef2_wf22,  ~+ = 1  for xef2+. 
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Now integrate the various terms in (4.31) over - o e  < ~ < oe and 0 < z < t to 
obtain 

t 

.[ f (El + E2 + Ez)td~ dt >= c [~ ~ 2 + tp2 + ~ + (tpt_ sv, e)z ~3~), 
0 

t t 

~ (E 3 H- E 4 H- E 5 -F E 6 -I- G)d¢dt => c f ~ (0Pt-  sl~{) 2 -[- ~p~)d~dt 
0 0 

--e6N~(t) ~-c  i ~ 121xt~P 2dxdt, (4.36) 
0 £2+(t) 

t 

~ [A- l(21p -[- (lpt- S/pC))Fll d~dt <= c } ~ (Irl + IKI + [Hl)Fd~dt 
0 0 

<= c(6N l(t) + 6N l(t)N2(t) + N l(t)N :(t)z). 

Combine these together to obtain (4.23). 
(ii) Proof of (4.24)-(4.26). These estimates are proved as in [6] and (i) with very 

little change. 

5. Characteristic Energy Method  

t 

The object here is to estimate N3(t) 2 = ~ ~(I)~lxl + I,~2~l) (4) 2 + ~p2) dxdt on the right- 
0 

hand side of the energy estimate (4.27) in Lemma 4.4. Rewrite the system (3.t7), 
(3.18) for ~b, ~p by diagonalizing the left-hand side. As in (2.25), (2.26) the convection 

matrix ; / %  A~/B t (5.1) 

has right eigenvectors rl, r2, left eigenvectors I1, 12 and eigenvalues 21, 22 given by 

r 1 = ( -  B/D, - ( M -  D)/2D)*, r: = (B/D, (M + D)/2D)*, 
11 =(-(M+D)/2B, 1), t2=((-M+D)/2B, 1), (5.2) 

Z1 =(M--D)/2B, ;%=(M + D)/2B, 

in which D = (M 2 + 4AB) 1/2 and M, A, B are defined in (2.41) and depend only on f l  
and f2. Define characteristic variables 01, 02 by 

(~)  =01r 1 +02r2, (5.3) 

which satisfy 

e(4)2 +~2)<o~ +o~ <c(4)2 +~2), 
2 2 2 c(~b x + tp~) < 01~ + 0 ~  + (121xl + t22~I) (0~ + 02) 

< c ( ~  + ~ )  + c(I,h ~1 + [/~2xl)(0 2 ~ -  I~2), (5.4) 

etc. for some constants c, C independent of x, t, 6. The characteristic form for (3.17), 
(3.18) is 

2 

Oit-F2iOix= Z Ok(lit+211i~)'rk+B-l(~P~-~tt-F-K-H) • (5.5) 
k = l  
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We first obtain an energy estimate from the characteristic form: 

Lemma 5.1. For ~ small enough, 

flO(x,t)lZdx + ½ if  122dO2dxdz + ½ 5i t;h~102dxdz 
02(t) 0 - (t) 

( # j i  f~j(t) fa + (t) 

+ Nl(t ) {6 + Nl(t ) + 6N2(t) + N2(t) 2} + N2(t)2}. (5.6) 

Proof of Lemma 5.1. Multiply the characteristic form equation (5.5) by 0 i and 
integrate over -- oo < x < a~, 0 < z < t, 

t 

02(x, t )dx -  ~ ~ 2ifl2 dxdz = ~ 02(x, O)dx 
0 

Throughout this analysis we use the fact that 2~ depends primarily on f~ in f22 (i.e. 
x > 0 )  and on f2 in ~21 (i.e. x<0) .  

First we partly handle the second term on the left by noting that, from (2.17) for 
f22 and (2.29) for f2_ and for some 7, 

-21x=-,~1:,(f2)+O(f~)=l)q~lWO(~)e-'(Ixl+t)) for (x,t)eI2_, (5.8) 

--~.2x=--azx(f~)÷O(fzx)=l).2xl÷O(cSe -~(Ixl+O) for (x,t)ef22. (5.9) 

Thus 

i 5~t~O~+22xO~dxdv~- if. l,hxtO~dxd~- 5 S l&xlO~dx& 
0 D _  (t) D2 

+ $$ 121x102dxdz + c6Nl(t) 2 . (5.10) 
~+( t )  

Next use the bounds 

lit+2ilix=O(1)2ix~+O(ae-e(l~l+')) on £2 i, (5.11) 
[lit+ 2ili~l<cl2j~l+O(6e-r(N+°) on f2~(i=t=j), 

which follow from (2.18), (2.36), (2.37), to estimate (integrating by parts) 

0 i ~ Ok(lit+Ailix).rkdxdt <c6(~(. 02lAi~]dxdt÷Nl(t)2"], (5.12) 

<¼ [.~ O~12~ldxdt+c [.~. O~12~ldxdt+c6X~(t) 2, (5.13) 
eaAt) ~At) 

for some constant c. 
Next since B - t  is bounded, 

t 

(. OiB - l(F + K + H)dxdt < c(6 + 6N2( 0 + N2(t) 2) N l(t) (5.14) 
0 
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from Lemma 4.2. Finally use IBxJ+ IBtJ <c([Rlxl +lA2xJ)<c6 and qSx= -~p~ to 
estimate 

! I O,B-lOPxx--pn)dxdt <c  ~ 02~ +02~ +(121xl+12z~l)(lOOxl+lOOtldxdt 

+ S IOOt(t)l + IO0~l(O)dx) 

< c(N2(t) 2 + '~ Sf (I,h ~1 + I,~2~t)02 dxdt + N,(t) 2) (5.15) 

Combine (5.7), (5.10), (5.12)-(5.15) to obtain the desired estimate (5.6) and complete 
the proof of Lemma 5.1. 

Since N~ and N2 can be bounded through the energy estimate (4.27), we now 
only need to find bounds on the three integrals on the right of (5.6): 

o~(t) 

12 = yy J,~zxJO~dx& and 13= I~ 12,~JOffdx&. 
0 2 ( 0  O + (t) 

The estimates are derived using the characteristic energy method developed by Liu 
[71. Actually we use a somewhat simplified version in which integration is 
performed along piecewise linear approximations of the characteristics. Although 
simpler, this version is less robust since its validity depends in an additional way on 
the shock being weak. 

Write the eigenvalue 2~ as piecewise constant part ~ plus an error i ,  i.e. 

)oi = 21 + 2~, (5.16) 

in which 
f2 ~ ¢ ~  2 + ~(x , t )=  ~ ~tJ1 J= i , x > s t  (5.17) 
(2i(ft- ~) = 27,  x < st. 

Define approximate, piecewise linear characteristics Xl('c , t, x), Xz(z, t, x) (cf. Fig. 2) 
satisfying 

~vX~(z,t,x)=X~(Xi, z), X i ( t , t , x )=x  , (5.18) 

X = St 

X 1 

~ ~X 
Fig. 2. Piecewise linear characteristics X1 and X2 
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i.e. 

x ~(% t, x ) =  

x+V(T-t) 
x + ; 4 ( ~ - t )  

( s - , ~ ? )  + ~_ 
~ - f ~  ( x - 2 1  t )+ ,q  z 

if x > st, X ~ > ST 

if x<s t ,  X~ <sz 

if x>st ,  Xa <sz 

X2(z , t , x )={Xx+)~ f ( z - t )  if x > s t  
+ 2 ~ ( z - t )  if x < s t .  

Note  that X2 is not defined past the time that it intersects X2 = sT. Equation (5.5) 
can be rewritten as 

2 

O,,+~O,x= Z Ok(1, t+2d,x) ' rk+B-l(qJx~--~, t - -r- -K--H)--~f l~ .  (5.19) 
k = l  

Multiply by 0~ and integrate along Xi to obtain 

{ Oi(x' 02 = ½ So Oi ~' Ok(li' + 2ilix)'rk 
k = l  

+ B -  '(~p~-- ~Ptt -- F- -  K - H) -- X, Oix} (X,(z, t, x), z)dz + Oi(X,(O, t, x), 0) 2 . 

For  any non-negative function g(x, t) we integrate to get 

i , {2 gO~ dxdT = ½ ~ ~ CrO, ~= Ok(l,t + 2,l,x ) • r k 
0 0 k 1 

+ B -  I(~P~x- ~ " -  F- -  K - -  H)--  "X'O'x} (x' T)dx& + - oo ~ ( ~O{) (x, O)dx 

+ ~ (GO~)(~,O)d~, (5.20) 

in which 

E,(x, T) = i c~Xi g(Xi(a, z, x), o') ~ -x  (a, z, x)da, 

T 

(5.21) 

The inequality in (5.20) follows from the non-negativity of g and (OXi/Ox). 
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Since X~_ can only be extended forward for a finite time, until it hits the line 

x'= st', define c3X2/Ox = 0 for a past that time. Note that \ 0x ] is piecewise 
constant and bounded, i.e. for a > z ,  X~(a, z, x) satisfies 

OX 1 _ ~ 1  f o r  (x>sz, Xl>sa) o r  ( x < s T ,  X I < S ( I  ) 

Ox ~(s-2~-)(s-21+) -1 for x>s%X~<sa,  

I for (x>sz, a<(s-2]) -~(x-2f"c) )  or 

~X2 (a, ~, x) = (x < s~, cr < ( s - , ~ ; ) -  ~ (x - , ~ ;  ~)) 
Ox 0 otherwise. (5.22) 

For  three different choices of g we shall utilize (5.20). For each choice the 
various terms on the right-hand side of (5.20) will be estimated as: 

i ~ OiOk(lit+2ili~)'rkGdxdz t ~ <(suplGI) ~ (]Aaxl + 1).2~[) OzdXdz 
-oo -09 

< (sup IGI) g3(t) z , (5.23) 

) 

i -09 ~ GO'BI(F +K+H)dxd'c <c(suPlG[) io -09 ~ ]O,J([F[+IK[+IH[)dxdz 

-< c(suplGl)Nl(t ) (6 + bN2(t ) + N2(t)2), (5.25) 

(GO~) (x, O)dx = (sup ]GI)NI(0) 2 . 
--09 

Since G(x, t) has a jump discontinuity along the line x = st, write 

a 
ffxx G = G(x)6(x - st) + G~(x, t) , 

~ t G  = s -  1 6 ( x ) 6 ( x -  st) + G~(x, t), 

(5.26) 

in which G(x) is the size of the jump in G at (x, t=s- ix )  and Gx, Gt are regular 
functions. We need a bound on integrals along the line x=st. From Eq. (3.18), 

2 2 ~ t ~ < c ( ¢ x + ~ + ~ + ~ L + H ~ +  * , q~x+tp~+~p4). Since ~ IHZdxdz<c62 and 
0 

I¢~[ + [~Px[ + [~Ptl < N1, then the Sobolev inequality implies that 

2 2 f (t;~ + ~ ) ( s z ,  z)dz "2 <= 
0 0 -09 

(~;x 2 + ~ 2 2 2 1/2 + ~ + tp~t + tptt)dxdz 

=< c(6 + N2(t ) + Nl(t)N2(t)). (5.27) 
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Now we are ready [using (5.4)] to estimate the terms in (5.20) containing Wxx, lp~: 

+ G((B- 1)xO¢~p~-- (B- 1)~Oi~p~ ) + B-  l(G~Oitp~- G~Oi~p~)] dxdz 

-- GOiB- l~p~dx - GO~B- ltp~(s~,~c)dz + ~ GOiB- l~&(x,s - 
- o~ 0 0 0 

t co 

w~+w~ +~x+~dxd~ _-<c(suplGl) .[ ~ 2 2 2 2 

+c(supIG]) -oo7 ,;J+,pfd~d~) t! -0o7 (l'l~xl+l;~I)O~d~d'~) 't~ 
+c(i 

+c(suplGl)( j  OZ(t)dx)'/z(%~pz(t)dx) 1/z 

=<c(suplGI)(ge(o 2 + N 2 ( t ) N 3 ( t ) + N ~ ( t )  2) 

i t  \1/2 
+ e(sup IGI)(6 + u2(t)+ N,(t)N2(t)) If 02(~% ~)a~} 

/ 
(5.28) 

Combine (5.20), (5.23)-(5.25), (5.28) to obtain 

Lemma 5.2. Let g be non-negative and define G by (5.21). Then 

i S g 02dxdz < c(sup [G]) (6Nl(t) + Nl(t) 2 + Nt(t)N2(t) 2 + N2(t) 2 + N3(t) 2) 
0 

[ t  \112 
+ c(suptG D (5 + N2(t)+ N,(t)N2(0) t !  02(sz' z)dz) . (5.29) 

Since Nt,  N 2 a r e  bounded through Lemma 4.4 and we are in the process of 
bounding N3, it will suffice to show that (sup IGI) < 3 and to bound the two integrals 
on the right of (5.29) for each case. 

The estimate from the characteristic energy method is 
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L e m m a  5.3. For 8 sufficiently small, 

i I  I'h~lO2dx&+ f l  I&xl0~dxd~+ ff I~ldO2dxd~ 
1 (t) f&(t) O + (t) 

< cS(cSNl(t) + Nl(t) 2 + Nl(t)Nz(t) 2 + N2(t) 2 + c5-1/2N3(t)2 ) 

+cS(b+N2(t)+Nl(t)N2(t))(iO2(sz, z)dz) 1/2 . (5.30) 

Proof i) Estimate on [)qx[02. Let g=zl[21x[ in which Z1--1 for x < 0 ,  Z I = 0  for 
x > 0. Then 

[ 2 l~(x, ~) + O (8 e - ~l~J + ~),  (x, ~) e f2 +, 

g(x, z) = ~ - 2ix(x, z) + 0(8 e - ~(lxl +,) ,  (x, z) ~ f2_, (5.31) 
! 
[ 0 ,  (x, ~) e f22. 

The relevant characteristics in (3.52) are X2 which are entirely contained within 
f21 =/2+ wf2_ (cf. Fig. 2) and in/21 the characteristics are straight lines so that 
~X2/~x - 1. Fix (x, z) ~ O 1 and denote 

[ r l ,  T23 ={a:z<a,(X2(a,z,x),a)el?+}, 
(5.32) 

IT 3, T4] = {a:z < a, (X2(a, z, x), a) e f2_}. 

Depending on the sign ofx and the location of(x, z), the Ti's take on the values z, 
(endpoints), z - x / 2 ;  (intersection with x = 0), or T satisfying 

y~ = y(X> T) = (X2(T, z, x ) -  2~- T)/(If~T ) = (x -- 22 z + (2~ -- 2~-) T ) / ( ~ )  (5.33) 

[intersection with (f2+, f2_ border)]. It follows that for (x, z) large, T =  O(x) + O(z), 
and thus that for each i 

10tT~t + I~xT~[ < c, (5.34) 

with c a constant independent of x, z, & 
In f21, (~/63o')3~1(X2(o -, % x), a) = / ~ 2 2 1 x  "]- 21a and 121,1 < c8(t + a)-  3/2. Thus 

T2 T4 m 
[21,Ida+ S 121,1da< f c6(l+a)-3/2da<cS(l+z) -~/2. (5.35) 

Tt T3 z 

Using OX2/Ox= 1, (5.35) and (5.31), we may write 

T2 T4 
G(x,z)= ~ 21~(X2(a,z,x),a)da- ~ 21~(X2(a,z,x),a)da 

T1 Ta 
T2 Ta 

= ~ (2 ix+(22)-12i~)d  a -  ~ (21x+(22)-121~r)da+O((~(l+z) -1/2) 
TI T3 

=(42)-l(21]T~--2~]rr~) + O(8(1 +Z)-1/2)<C8(1 + ~)-l/Z, (5.36) 

since (2.31) implies that 21=2~-+O(1 +z)-1/2 for x < 0 .  Next differentiate G to 
obtain 

4 
Ia~l = (42)- 1 Z fl,{(a,~T~)2~-21~(Xi(T, ~, x), T0 

i=1 

-1- 21a(X2(T/,  ~, x), T/) -1- Zlx(X2(T/,  "c, x), T/)} q- 0((~(1 -t- "f)- 1) ~ c a ( l  q- T)-  1, 

(5.37) 
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in which fli = + 1. Similarly, 

[G~I < c6(1 + z)- 3/2 (5.38) 

Moreover G = 0  for x > 0  and 1~'~[ <c5(1 +z) -1/2 for x < 0 .  Therefore 

sup lGl < c(~, 
t t ao 

S ~ ((~iG)2+G~+G~) 02dx&<c62 ~ ~ (l+z)-202dx&<c52N~(t)2.(5.39) 
0 - o o  0 - ~ a  

Using (5.39) in (5.29) establishes the bound (5.30) for the integral of 12~x1022. 
ii) Estimate of l,h~1012- Let g = X~121xl as in (i). Now the relevant characteristics 

are X~(a, z, x) with X~ < 0 which may enter f21 from 02 and may cross X~ = sa as 
well as y = Yl. Thus (SXJSx) (a, z, x) has values 1 for x < sz and (s - Z?)/(s - 2~) for 
x > sz. Denote 

[T 1, T2] = {a :z < a ,  (Xl(a, ~, x), a) ~ f2+}, 
(5.40) 

[T3, T4] = {a: z<a,(Xl(cr, z , x ) ,a )eO-} .  

Depending on the sign of K and the position of(x, z), each T i takes on one of the 
values sl = z, s2 = co (lower and upper limits), s3 = (x-2~-z)/2[-, 
s ,=--(s-2~)(x--Z-~z) / )o~(s-2 +) (intersections with X 1 = 0  for O < x < s z  and 
sz < x respectively), or s5 satisfying y = y ~, i.e. 

Xl(ss, ~, x ) -  ,V; s~ 
Yt---- [ /~5  

There are three possibilities depending on whether x < 0 ,  0 < x < s z  or x > s z ;  
however in each case Xl(s5, ~, x )=dlx+d2z  + 2-[s5 (with three different positive 
values of d~, d2). Thus 

ss=~y12(dlx +d2z) 2, ¢3xSs=2dlayt2(dlx-kdzz), O~ss=2d2ay12(dlx-kd2z), 

]21~(X ~(s5, z, x), ss) I < c6(1 + ss)- I.  (5.4i) 

For i < 5, IOxSi[ + I8~si[ < c and 121~(a = si)[ < c6(1 + z)- 1. Thus for each i < 5, 

(18~s,I + la~s,[)I,h~[ (X~(s,, ~, x), s,) < c~(1 + ~)- 1. (5.42) 

Evaluate G as 
T 2  T 4  

G(x,z)=x~ ~ Zlxda-l¢ 2 ~ Z~fla+O(e-~) ,  
T~ T3 

in which xl, to2 are piecewise constant, having a jump along x = sz and taking on 
values either 1 or (s-)J~)/(s-)o~). As before )o~:, may be replaced by (8/8o')). 1 by 
adding in terms proportional to 2~  so that G = G(x, z) satisfies 

--  - -  1 T 2  T 4  G=(2  z) (X12:]T~--Xz),~]T~)+O(5(I +z)-~/e)<cS(1 +z) - l /z ,  
4 

la~l = 1(2~)- ~ E /~{(~,~T~) ( , ~ ) . ~ +  2~)+  2~O~X~} + oo(a  +~)-  1)t 
i = 1  

__< c~(l + ~)- 1, 

Ia~[ <c5(1 +z ) -  1, (5.43) 



126 R.E. Caflisch and T.-P. Liu 

in which the 8-function part of G~, Gt is ignored as in (5.26). That part is 
compensated for by the integral along x'=st '  in (5.30). Also for all x, 

11"~1 _-< c8(1 + :)- ~:2 + c I;~2~t - (5 .44)  

Thus sup IGI < 8, 

t t 

f I(GIG)2 + G~ + G~)O2dxdz<--c82 f I((~ + :)-2 + 61;-~xl)02dxd~ 
0 0 

< c82Nl(t) 2 + c63N3(t) 2 . (5.45) 

Substitute (5.45) into (5.29) to complete the estimate for 12~x[0~ in (5.30). 
iii) Estimate of 122~[02. Let g=z2122~[ with Z2 the characteristic function of 

02(0, i.e. 

~'l;~2Ax, ~)l, x > 0  
g(x, ~) = (0, x < 0 

(5.46) 
= ~-22~(L(x-sa))+O(6e-~(l~l+~)), x > 0  

(0, x<0" 

The relevant characteristics here are Xl(a, "c, x) with X 1 > 0 (i.e. X i G (2z). In f22 the 
X 1 characteristic has piecewise constant slope, so that for a > % 

O X l ( a , z , x ) = f l  if (x>s'c, X l > s a )  or (x<s'c, X l < s a )  
Ox ~ ( s -2~ ) / ( s -2~ )  if x > s % X ~ < s a  

(5.47) 
Denote 

[T,, T23 = {a: : <a, Xi(a,  %x)> sa } , 
(5.48) 

[T2, T3] = { a : z < a , O < X : ( a , z , x ) < s a } .  

If x<s~ so that X 1 <sa for all a > : ,  set T1 = T2=:.  We can identify Ti as T 1 = : ,  

{~, if x < s z  
T2= ( x -2[ ' c ) / ( s -2~) ,  if x > s z '  

(5.49) 
~z--x/2-~ , if x <sz.  

T3= (--(x--) f l[ 'O(s--2;) / (s--2~); t~,x>s:  x > s z .  

As before for each i, lo, r~l + l~r~l < c. Note that XI(T3, ~, x) = 0. Now evaluate G as 

T2  

(~, ~) = - ( s  - ~. ? )  ( s  - ;, ; ) -2 i ),2 , ( x  + ;~i ~ (~ - ~) - s~)  d~  
1: 

T3  

-- ~ ,'~2x(Xl(T2, "c, x) + ]~'l (a -- T2)- sa)da + O(fi e - ' 9  
T2 

=(s--2~-) - I  (~/c?a)22da+ ~ (~/aa)22da +O(Se -'~) 
T2 

= ( s -  2~)-  : {2~(0, T3)- 22(x, ~)} + 0(6 e-~) < c6, (5.50) 

since 22 has total variation of size 6. Next 

]G~(x, ~)l = ( s -  21)-1 {X:~(T3, ~, x) 22~(0, Ta)-  22~(x, "c)} + O(6e-~) 

< c(122~(x, ~)l + 8 e -  ~), (5.51) 
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since 12z~(0, T3)I _-< c6 e -  ~r~ < c6 e -  ~. Similarly 

l G~(x, z)l < c(122~(x, r)I + 6 e -'~). (5.52) 

Also in x > 0 ,  1i"21 <c1,~2~1 <e~. Thus 

suplGI <c6,  

i ~ ((7~ 6) 2 + a2~ + 62,)02 dxdz < c i f (~ I,~2~1 + ~ e- 2~,)02 dxdz 
0 0 

<= c 6 2 N l ( t )  2 + c(~Na(t) 2 . (5.53) 

Substitute (5.53) into (5.29) to complete the estimate for l)~2xlO 2 in (5.30). This 
completes the proof of Lemma 5.3. 

Note. The same estimation method does not work for I~ 122xlOZdxdz, because 
f22(t) 

the X2 characteristics have endpoints on the line x ' =  st' on which 122~] is large. 
Fortunately this term was estimated in Lemma 5.1. t 

We finish the characteristic energy estimates by estimating ~ 02(sz, z)dz. For 
x > s t ,  o 

,{ 
+ B -  l(tp~-- ~p** -- F - K -- H) -- ~iO,~t (x -- ~+ (t-- r), z) dr + Oi(x - ~+ t, 0) 2 . 

Thus J (5.54) 

i St st c~ 
Oi(s% z) 2dr=s -1  I Oi(X'S-1X)  2dX<=S-1 f O i ( x ' S - l X )  2 d X +  l" Oi(x,t)  2dX 

0 0 0 st 
2 

=½(s--~+) -1 O, ~ Og(l,~+2,1,~).r k 
0 s~ k 1 

+ B -  ~(~;~-  ~p~ - r - K -  H) - ;~0~} ix, ~) dxd~ + ~ O~(x, O) ~ dx. 
0 (5.55) 

Estimate various terms separately as 

lit Oi Ok(l,+2iI~). < I ~ 02(121~l+122xl)dx&<N3(t) 2, 
s~ k=l o -co (5.56) 

Of(x, 0)dx__< N,(0 2, 
0 

i ~ O , B - I ( F + K + H ) d x &  <cNl( t ) (b+3Nz( t )+N2(t )2) ,  (5.57) 
8~ 

by Lemma 4.2. Next since I~i[ < e [J'zx[ < C6 for x > 0, 

<= c61/2 N2(t)N3(t) . (5.58) 
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Finally, using (5.27) in the last step, 

St 

+ (B -  1 )fii~p~ dxdz + ~ B -  10iv?~(x, O) dx - ~ B -  10~p~(x, s - 1 x) dx 
0 0 

- Ts, B-lO'  (x't)dx- oi 

<= c [Nz(t)  2 + 61/2Nz(t)N3(t ) + Nl(t) 2 
L. 

< c ]Na(t) 2 + Nz(t) 2 + 6a/ZN2(t)Na(t) 

t \ t / z7  
+(6+N2( t )+N,( t )N2( t ) )  ! OZ(sz, z)dz)  J .  (5.59) 

Combine (5.55)-(5.59) to obtain 

t 

S 02( sz, z)dz < e [6N~(t) + Nl(t) 2 + Nz(t) 2 + N~(t)N2(t) 2 + Na(t) 2 ] 
0 

t \1/2 
+c(6+Nl( t )N2( t )+N2( t ) )  ! 02(sz, z )dz)  , (5.60) 

from which it follows that 

Lemma 5.4. For 6 sufficiently small, 
t 

O 2 ( s . c , . g ) d . g ~ c [ ¢ ~ 2 _ + _  2 2 2 2 _ N I + N 1 N 2 + N 2 + N ~ ] ( t  ). (5.61) 
0 

Now combine (5.30) of Lemma 5.3 with (5.61) of Lemma 5.4 to obtain, after 
some recombination. 

[.I 12ax102dxdz+ [.~. 122~102dxdz+ ~, 121~102dxdz 
1 (t) ~2(t) (2 + (t) 

C 3 ( 6  2 ~-  N~ 2 2 2 + N 1 N  2 + N 2 + 6-  J/2N~) (t). (5.62) 

Combine this with (4.27) of Lemma 4.4 to obtain 

NI(N1 - c6 - caN z - cN22 - cbN1N 2) + N22 < cNx(O) z + c63 + c61/ZN 2 . (5.63) 

Next combine (5.62) with (5.6) of Lemma 5.1 using the inequality 

N3(t)2~c .~ ]JqxtO2dxdz+e ~ l)L2x[ Ozdxdz 
9x(t)  ~ ( t )  

to obtain 

N Z < c N l { b + N l  +6UxNZ2+6N2+N22)}+cN2+c63.  (5.64) 

R. E. Caflisch and T.-P. Liu 
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Finally combine (5.64) with (5.63) to obtain 

NI(NI-cb-c fN2-cNaz-c8N~N2)+ N~ <=cNI(O)2 +c6 a . (5.65) 

This inequality implies that either N~ and N2 are both small or that N~, N2 are of 
O(1) size independent of 6. However since N1, N2 start off with size 6 z and are 
continuous, they must remain small. It follows that, for N~(0) sufficiently small, 

N 2 + Uz z + U~ < c62 + c N I ( 0 )  2 . (5.66) 

By assumption II ~b, tp II 2(0) 2 + [I 8~p [[ 1(0) 2 < c62. This establishes the main result of 
this paper. 

Theorem 5.1. Let 6 be sufficiently small, then for any t >_>_ 0, 

sup {l]q~,~pll2(02+llo,~plll(z)2}+ i ]14~,~x,~,ll~d~<-- c~2, (5.67) 
O ~ < t  0 

Finally we prove Theorem 1. Since ~b~ = 0.,  ~P~ = m., ~p, = - z . ,  then 

t 

sup II~,,m,,z, lll(z)2 + ~ IIQ,,m,,z, N2d'c~c62. (5.68) 
O<--z<--t 0 

Since this inequality is also satisfied by (02, m2, Z2) and (0a, m3, z3), we obtain 

t 

sup ][(O--O0,(m-mO,(z-zO[ll(Z)2 + ~. [l(O-OO,(m-mO,(z-z~)ll~dz<c6 2. 
o-<~-<~ o (5.69) 

Use the formula for f in terms of 0, m, z and the equation for ft in terms offx and f 
to obtain 

sup ~ ( f - fOz+(L- f l~ )2+( f , - f l , )2dx  
0--<~--<t -- co 

+ i ~ ( f - f l ) z+( f~- f l~)2+( f t - f l t )Zdxdz~ c~2, (5.70) 
0 - -c~  

which is the inequality (1.8). 
We now prove (1.9). From (4.25), (4.26) and integration of tp~ times (3.18), we 

have t~ 
]l~pt, (~x, ~px]12(t2) <-_c]r~pt, (ax, ~pxr]2(tl) + c ~ [l~bx, qJx,~tll~dz 

t l  
t2  

+c~ ~ [)ol~ltp2dxdz, 0-<tl_-<t2<09. 
t l  - -c~  

This implies (by integration of tl) that 

II~x~,~xxtlz(t) <c } I1~x,~,tP, ll~ dz+c i ~ I21~1~P 2dxdz. (5.71) 
t - 1  t - - 1  --o9 

The estimate (5.66) implies 

i i T 
0 0 - .oo  

which is slightly stronger than (5.67). It follows that the right-hand side of (5.71) 
tends to zero as t ~ o e .  This proves (1.9) and concludes the proof of Theorem 1. 
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Appendix A. The Chapman-Enskog Error for the Broadwell Equation 

Suppose that  ~, m and z = z(~, m) satisfy the model  Navier-Stokes  equat ions  with 
errors, i.e. 

q , + m x = e l ,  rn~+z(~ ,m)x=e2 ,  (A.1) 

with u = m/o and 
z = ~ f ( u ) -  v(u) ux, 

in which F and  v are given by (2.11), (2.16). The third Broadwell  equat ion 
(z~ + m~ = Q ( f  f ) )  then has the error  

E = Q( f  f ) -  (zt + mx) = ~ {(Q - z) z -  4(z  2 -  m2)} - (zt + m~). (A.2) 

To  calculate E, first eliminate z = ~ F - v u x  to  get 

E = ½ {Q2 _ 2~ 2F - 3Q2F 2 + 4m z} + {¼(~ + 3QF)vu x - as(vux) 2 - ( ~ F  - vu.) t - m~}. 

(A.3) 

The undifferentiated terms vanish due to the definition of  F. Next  eliminate time 
derivatives (~F)t using the Navier-Stokes  equat ions to obtain  

E = {¼0(1 + 3F) vux + ( F -  u F ' - -  1)mx + F'(oF)x} 

+ { -- F'(vu~)~ + (vux) t -  ~(vu~) 2} + {(-- F + uF ' )e  t -- r ' e 2 } .  (A.4) 

The terms in the first bracket,  which are linear in first derivatives, vanish due to the 
choice of  viscosity v. Therefore 

E = { - F ' ( v U x ) x + ( V U x ) t - - ~ ( v u x ) Z } + ( - F + u F ' ) e l - F ' e 2  . (A.5) 
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